Lattice Tester Online Documentation 0.1.0-861
Software Package For Testing The Uniformity Of Integral Lattices In The Real Space
Loading...
Searching...
No Matches
Bibliography
[1]

L. Afflerbach and H. Grothe. Calculation of Minkowski-reduced lattice bases. Computing, 35:269–276, 1985.

[2]

J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups. Grundlehren der Mathematischen Wissenschaften 290. Springer-Verlag, New York, 3rd edition, 1999.

[3]

R. Couture and P. L'Ecuyer. Orbits and lattices for linear random number generators with composite moduli. Mathematics of Computation, 65(213):189–201, 1996.

[4]

U. Dieter. How to calculate shortest vectors in a lattice. Mathematics of Computation, 29(131):827–833, 1975.

[5]

S. Joe and I. H. Sloan. On computing the lattice rule criterion R. Mathematics of Computation, 59:557–568, 1992.

[6]

P. L'Ecuyer and R. Couture. An implementation of the lattice and spectral tests for multiple recursive linear random number generators. INFORMS Journal on Computing, 9(2):206–217, 1997.

[7]

P. L'Ecuyer, E. Bourceret, D. Munger, M.-A. Savard, R. Simard, M. Thiongane, and C. Weiss. Lattice tester. https://github.com/umontreal-simul/latticetester, 2022.

[8]

P. L'Ecuyer. Tables of maximally equidistributed combined LFSR generators. Mathematics of Computation, 68(225):261–269, 1999.

[9]

A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261:515–534, 1982.

[10]

C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems. In L. Budach, editor, Fundamentals of Computation Theory: 8th International Conference, pages 68–85, Berlin, Heidelberg, 1991. Springer-Verlag.

[11]

V. Sinescu and S. Joe. Good lattice rules with a composite number of points based on the product weighted star discrepancy. In A. Keller, S. Heinrich, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2006, pages 645–658. Springer, 2008.

[12]

I. H. Sloan and S. Joe. Lattice methods for multiple integration. Oxford Science Publications. The Clarendon Press Oxford University Press, New York, 1994.